
Math 2050, intermediate value Theorem

Recall the definition of continuity of a function.

Definition 0.1. A function f : A→ R is said to be continuous at c ∈ A
if ∀ε > 0, ∃δ > 0 such that if |x− c| < δ, x ∈ A, then |f(x)−f(c)| < ε.
The function f is said to be continuous on A, if f is continuous at
c ∈ A for all c ∈ A.

Important remark: the choice of δ is a-priori depending on the point
c ∈ A.

Example: limx→c x
n = cn for any given n ∈ N.

Proof. We first consider the error:

|f(x)− f(c)| = |xn − cn|

= |x− c|

∣∣∣∣∣
n−1∑
k=0

xn−1−kck

∣∣∣∣∣
≤ |x− c|

(
n−1∑
k=0

|x|n−1−k|c|k
)
.

(0.1)

Like before, it suffices to control the ”coefficient”. We fix δ =
min{Λε, 1} where we will specify Λ later. Then if |x − c| < δ ≤ 1,
we have

|x|n−1−k ≤ (|x− c|+ |c|)n−1−k ≤ (1 + |c|)n−1−k.(0.2)

Hence,

|f(x)− f(c)| ≤ |x− c|

(
n−1∑
k=0

(1 + |c|)n−1−k |c|k
)

= Mc|x− c|
(0.3)

where Mc is the number depending on the value of c. Then by choosing
Λ = M−1 which also depends on c, we have if |x− c| < δ,

|f(x)− f(c)| < ε.

In this way, it is clear that the choice of δ is possibly depending also
on the given point! This (in)dependence will be important later! �

Some algebra of continuity (using sequence criterion):

Theorem 0.1. Let A ⊂ R and f, g : A → R be functions continuous
at c ∈ A and λ ∈ R. Then f + g, f − g, λf, fg are continuous at c ∈ A.
If g(x) 6= 0 on A, then fg−1 is continuous at c ∈ A.
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As a immediate applications: polynomials are continuous on R.

More properties of continuous functions (also using sequence crite-
rion):

Theorem 0.2. Let A,B ⊂ R, f : A → R and g : B → R such that
f(A) ⊂ B. If f is continuous at c ∈ A and g is continuous at f(c),
then g ◦ f is continuous at c ∈ A.

Proof. Let xn ∈ A such that xn → c. Since f is continuous at c, we have
f(xn)→ f(c). Using sequence criterion again, since g is continuous at
f(c) and f(xn) → f(c), we have g (f(xn)) → g(f(c)). Since xn is
arbitrary, we have the continuity of g ◦ f at c ∈ A. �

Example: f(x) =
√
x+
√
x, sin |x|, etc are continuous on R+.

1. Continuous functions on closed and bounded intervals

Examples:

(1) f(x) = x−1 on (0, 1];
(2) f(x) = (x+ 1)−1 on [0, 1].

If we allow the interval to be open, the first example states that we
allow the function badly behaved nearby boundary even if we impose
continuity (since this is local information). But if the function is contin-
uous on a closed and bounded interval, the structure of domain limits
the possibility of bad behavior. The second function is bounded. And
this is true in general.

Theorem 1.1. Suppose f : [a, b] → R is continuous, then there is
M > 0 such that |f(x)| ≤M for all x ∈ [a, b].

Remark 1.1. One might compare the local boundedness theorem in
previous lecture: If f is continuous at c ∈ A, then there is δc,Mc > 0
such that |f(x)| ≤Mc for all x ∈ A, |x−c| < δc. This local boundedness
theorem doesn’t imply the global boundedness as can be seen from the
example f(x) = x−1. This is because the δc found using continuity
depends on the center c. As c → ∂A, δc might degenerate, and Mc

might blow up to +∞ which gives us no information. (Think about
the explicit value of δc in the example f(x) = x−1 on (0, 1]).

Remark 1.2. As mentioned above, the assumption of closeness is neces-
sary, f(x) = x−1 on (0, 1] is unbounded but is continuous. The bound-
edness is also necessary, as can be seen from f(x) = x on [0,+∞).
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Thanks to the boundedness Theorem, it is clear from completeness
axiom that both

(1.1) M = sup{f(x) : x ∈ [a, b]}, m = inf{f(x) : x ∈ [a, b]}
exists as a real number. The next Theorem shows that m,M can in
fact be achieved.

Theorem 1.2 (Max-Min Theorem). Suppose f : [a, b] → R is a con-
tinuous function, then there is x1, x2 ∈ [a, b] such that f(x1) = M and
f(x2) = m so that for all x ∈ [a, b],

f(x1) ≤ f(x) ≤ f(x2).

Sketch of Proof. (Refer to Textbook if you wish more detail) By defi-
nition of sup, take xi such that f(xi) → M . Since xi ∈ [a, b], xik → x̄
for some x̄ ∈ [a, b]. By Sequence criterion, f(xik) → f(x̄) = M . The
lower bound is similar. �

Some variation of Max-Min Theorem: Given a continuous function
f : [a, b] → R. How can we find x̄ such that f(x̄) = 0? First of all, if
f(x) > 0 or < 0 for all x, this is clearly impossible. If f ≡ 0, then the
assertion is trivial. What if f is positive and negative somewhere?

Theorem 1.3. Suppose f : [a, b]→ R is a continuous such that f(a) >
k > f(b) for some k ∈ R, then there is x̄ ∈ [a, b] such that f(x̄) = k.

Proof. By translation, we may assume k = 0. In the textbook (or in
class), we use the bisection method which is a algorithm to locate the
root. Here I am going to give an alternative proof (also discussed in
class).

Let p = supS = sup{s ∈ [a, b] : f(x) > 0 ∀x ∈ [a, s]}. Since
a ∈ S, p ∈ R exists by completeness. It suffices to show that f(p) = 0,
namely is the first root. By continuity at a, there exists δa > 0 such
that f(x) > 0 on [a, a + δa) so that p > a. Like-wisely, p < b by
continuity at b.

Assume f(p) > 0, then there is δ > 0 such that for all x ∈ (p− δ, p+
δ) ⊂ [a, b], we have f(x) > 0. Since p− δ < p = supS, there is s0 ∈ S
such that p − δ < s0 and hence we have f(x) > 0 on [a, p + δ). This
implies p+ δ/2 ∈ S which is impossible.

Assume f(p) < 0, then similarly there is δ > 0 such that for all
x ∈ (p−δ, p+δ) ⊂ [a, b], we have f(x) < 0. By the same argument, we
have f(x) > 0 on [a, p− δ/2] which is impossible. Therefore, we must
have f(p) = 0! �


